





TO: All Plan Holders

Dodge Data & Analytics

Construction Market Data Group

**ISQFT** 

Savannah Entrepreneurial Center

**Construction Journal** 

FROM:

James Aiello

**Assistant Director of Engineering** 

lomes M Siell

DATE: April 25, 2024

SUBJ: SAC 30610

Air Cargo Facility

Savannah Airport Commission

Attached please find Addendum No. 4 to the contract documents. All bidders shall acknowledge the receipt of Addendum No. 4 in the place provided in the bid proposal.

CM

ENCL: SAC 30610 – Addendum No. 4

CC: Engineering Files



# SAC 30610 Air Cargo Facility Addendum No. 4

The following amendments, additions, deletions shall be made to the contract documents. In so far as these documents are at variance with this Addendum No. 4 dated April 25, 2024, the addendum shall govern:

Question & Answer

Revised Specification Section 263213.13

\_\_\_\_\_\_

Question 1 from Mark Mullis of Energy Systems Southeast, LLC:

1. I am writing to request Generac Industrial Power Systems' consideration as an approved manufacturer for the upcoming Savannah Airport Air Cargo Facility project.

Response: Please see attached Revised 263213.13 Specification Part 2 Products.

# SECTION 263213.13 - DIESEL-ENGINE-DRIVEN GENERATOR SETS

# PART 1 - GENERAL

### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

# 1.2 SUMMARY

#### A. Section Includes:

- 1. Diesel engine.
- 2. Diesel fuel-oil system.
- 3. Control and monitoring.
- 4. Generator overcurrent and fault protection.
- 5. Generator, exciter, and voltage regulator.
- 6. Load bank.
- 7. Outdoor engine generator enclosure.
- 8. Vibration isolation devices.

# B. Related Requirements:

1. Section 263600 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine generators.

## 1.3 DEFINITIONS

- A. EPS: Emergency power supply.
- B. EPSS: Emergency power supply system.
- C. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

## 1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
  - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
  - 2. Include thermal damage curve for generator.
  - 3. Include time-current characteristic curves for generator protective device.

- 4. Include fuel consumption in gallons per hour at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.
- 5. Include generator efficiency at 0.8 power factor at 0.5, 0.75-, and 1.0-times generator capacity.
- 6. Include airflow requirements for cooling and combustion air in cubic feet per minute at 0.8 power factor, with air-supply temperature of 95, 80, 70, and 50 deg F. Provide Drawings indicating requirements and limitations for location of air intake and exhausts.
- 7. Include generator characteristics, including, but not limited to, kilowatt rating, efficiency, reactance's, and short-circuit current capability.

# B. Shop Drawings:

- 1. Include plans and elevations for engine generator and other components specified. Indicate access requirements affected by height of subbase fuel tank.
- 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 3. Identify fluid drain ports and clearance requirements for proper fluid drain.
- 4. Design calculations for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
- 5. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include base weights.
- 6. Include diagrams for power, signal, and control wiring. Complete schematic, wiring, and interconnection diagrams showing terminal markings for engine generators and functional relationship between all electrical components.

### 1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Data: Certificates, for engine generator, accessories, and components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: With engine and generator mounted on rails, identify center of gravity and total weight, including full fuel tank, supplied enclosure, and each piece of equipment not integral to the engine generator, and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Source Quality-Control Reports: Including, but not limited to, the following:
  - 1. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
  - 2. Certified Summary of Performance Tests: Certify compliance with specified requirement to meet performance criteria for sensitive loads.
  - 3. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
  - 4. Report of sound generation.
  - 5. Report of exhaust emissions showing compliance with applicable regulations.

- 6. Certified Torsional Vibration Compatibility: Comply with NFPA 110.
- C. Field quality-control reports.
- D. Warranty: For special warranty.

### 1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals.
  - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
    - a. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.
    - b. Operating instructions laminated and mounted adjacent to generator location.
    - c. Training plan.

### 1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
  - 2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
  - 3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.
  - 4. Tools: Each tool listed by part number in operations and maintenance manual.

# 1.8 QUALITY ASSURANCE

- A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
- B. Testing Agency Qualifications: Accredited by NETA.
  - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

## 1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
  - 1. Warranty Period: Five years from date of Substantial Completion or 1500 hours of operation, whichever occurs first.

# PART 2 - PRODUCTS

### 2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Caterpillar, Inc.; Electric Power Division.
  - 2. Cummins Power Generation.
  - Kohler Power Systems.
- A. Products of the following manufacturers, which comply with these specifications, are acceptable, other manufacturers are subject to owner's approval:
  - 1. Caterpillar, Inc.; Electric Power Division.
  - 2. Cummins Power Generation.
  - 3. Kohler Power Systems.
- B. Source Limitations: Obtain packaged engine generators and auxiliary components from single source from single manufacturer.

# 2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Engine generator housing, subbase fuel tank, engine generator, batteries, battery racks, silencers, load banks, sound attenuating equipment, accessories, and components shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
  - 2. Shake-table testing shall comply with ICC-ES AC156. Testing shall be performed with all fluids at worst-case normal levels.
  - 3. Component Importance Factor: 1.0.
- B. B11 Compliance: Comply with B11.19.
- C. NFPA Compliance:
  - 1. Comply with NFPA 37.
  - 2. Comply with NFPA 70.
  - 3. Comply with NFPA 99.
  - 4. Comply with NFPA 110 requirements for Level 1 EPSS.
- D. UL Compliance: Comply with UL 2200.
- E. Engine Exhaust Emissions: Comply with EPA Tier 2 requirements and applicable state and local government requirements.
- F. Noise Emission: Maximum noise level measured at any location 20 feet away from generator set shall be 76dB due to sound emitted by engine generator including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.
- G. Environmental Conditions: Engine generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of SAC 30610 DIESEL-ENGINE-DRIVEN GENERATOR SETS

  263213.13 4

performance capability:

1. Ambient Temperature: 5 to 122 deg F.

2. Relative Humidity: Zero to 95 percent.

## 2.3 ENGINE GENERATOR ASSEMBLY DESCRIPTION

- A. Factory-assembled and -tested, water-cooled engine, with brushless generator and accessories.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- C. Power Rating: Standby.
- D. Overload Capacity: 110 percent of service load for 1 hour in 12 consecutive hours.
- E. EPSS Class: Engine generator shall be classified as a Class X, 12 hours according to NFPA 110.
- F. Service Load: 60kW.
- G. Power Factor: 0.8, lagging.
- H. Frequency: 60 Hz.
- I. Voltage: 240-V ac.
- J. Phase: One-phase, three wire, delta.
- K. Induction Method: Turbocharged.
- L. Governor: Adjustable isochronous, with speed sensing.
- M. Mounting Frame: Structural steel framework to maintain alignment of mounted components without depending on concrete foundation. Provide lifting attachments sized and spaced to prevent deflection of base during lifting and moving.
- N. Capacities and Characteristics:
  - 1. Power Output Ratings: Nominal ratings as indicated at 0.8 power factor excluding power required for the continued and repeated operation of the unit and auxiliaries.
  - 2. Nameplates: For each major system component to identify manufacturer's name, address, model, and serial number of the component.

# O. Engine Generator Performance:

- 1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
- 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
- 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.

- 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
- 5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
- 6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
- 7. Sustained Short-Circuit Current: For a three-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
- 8. Start Time:
  - a. Comply with NFPA 110, Type 10 system requirements.

# 2.4 DIESEL ENGINE

- A. Fuel: ASTM D975, diesel fuel oil, Grade 2-D S15.
- B. Rated Engine Speed: 1800 rpm.
- C. Lubrication System: Engine or skid-mounted.
  - 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
  - 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
  - 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.
- D. Jacket Coolant Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with UL 499 and with NFPA 110 requirements for Level 1 equipment for heater capacity.
- E. Integral Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine generator set mounting frame and integral engine-driven coolant pump.
  - 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
  - 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
  - 3. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.
  - 4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
  - 5. Coolant Hose: Flexible assembly with inside surface of nonporous rubber and outer covering of aging-, UV-, and abrasion-resistant fabric.

- a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and non-collapsible under vacuum.
- b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.

#### F. Muffler/Silencer:

- 1. Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
  - a. Minimum sound attenuation of 25 dB at 500 Hz.
  - b. Sound level measured at a distance of 20 feet from exhaust discharge after installation is complete shall be 76 dBA or less.
- G. Air-Intake Filter: Standard-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.
- H. Starting System: 24-V electric, with negative ground.
  - 1. Components: Sized so they are not damaged during a full engine-cranking cycle with ambient temperature at maximum specified in "Performance Requirements" Article.
  - 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
  - 3. Cranking Cycle: As required by NFPA 110 for system level specified.
  - 4. Battery: Lead acid, with capacity within ambient temperature range specified in "Performance Requirements" Article to provide specified cranking cycle at least three times without recharging.
  - 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
  - 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 50 deg F regardless of external ambient temperature within range specified in "Performance Requirements" Article. Include accessories required to support and fasten batteries in place. Provide ventilation to exhaust battery gases.
  - 7. Battery Stand: Factory-fabricated, two-tier metal with acid-resistant finish designed to hold the quantity of battery cells required and to maintain the arrangement to minimize lengths of battery interconnections.
  - 8. Battery-Charging Alternator: Factory mounted on engine with solid-state voltage regulation and 35-A minimum continuous rating.
  - 9. Battery Charger: Current-limiting, automatic-equalizing, and float-charging type designed for lead-acid batteries. Unit shall comply with UL 1236 and include the following features:
    - a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
    - b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 to 140 deg F to prevent overcharging at high temperatures and undercharging at low temperatures.

- c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
- d. Ammeter and Voltmeter: Flush mounted in door. Meters shall indicate charging rates.
- e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
- f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

### 2.5 DIESEL FUEL-OIL SYSTEM

- A. Comply with NFPA 37.
- B. Piping: Fuel-oil piping shall be Schedule 40 black steel. Cast iron, aluminum, copper, and galvanized steel shall not be used in the fuel-oil system.
- C. Main Fuel Pump: Mounted on engine to provide primary fuel flow under starting and load conditions.
- D. Fuel Filtering: Remove water and contaminants larger than 1 micron.
- E. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.
- F. Day Tank: Comply with UL 142, freestanding, factory-fabricated fuel tank assembly, with integral, float-controlled transfer pump and the following features:
  - 1. Containment: Integral rupture basin with a capacity of 150 percent of nominal capacity of day tank.
    - a. Leak Detector: Locate in rupture basin and connect to provide audible and visual alarm in the event of day-tank leak.
  - 2. Pump Capacity: Exceeds maximum flow of fuel drawn by engine-mounted fuel supply pump at 110 percent of rated capacity, including fuel returned from engine.
  - 3. Low-Level Alarm Sensor: Liquid-level device operates alarm contacts at 25 percent of normal fuel level.
  - 4. High-Level Alarm Sensor: Liquid-level device operates alarm and redundant fuel shutoff contacts at midpoint between overflow level and 100 percent of normal fuel level.
  - 5. Piping Connections: Factory-installed fuel supply and return lines from tank to engine; local fuel fill, vent line, overflow line; and tank drain line with shutoff valve.
- G. Subbase-Mounted, Double-Wall, Fuel-Oil Tank: Factory installed and piped, complying with UL 142 fuel-oil tank. Features include the following:
  - 1. Tank level indicator.
  - 2. Fuel-Tank Capacity: Minimum 133 percent of total fuel required for planned operation plus fuel for periodic maintenance operations between fuel refills.

- 3. Leak detection in interstitial space.
- 4. Vandal-resistant fill cap.
- 5. Containment Provisions: Comply with requirements of authorities having jurisdiction.

## 2.6 CONTROL AND MONITORING

- A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of engine generator. When mode-selector switch is switched to the on position, engine generator starts. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.
- B. Manual Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts engine generator. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.
- C. Provide minimum run time control set for 15 minutes with override only by operation of a remote emergency-stop switch.
- D. Comply with UL 508A.

# E. Configuration:

- 1. Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the engine generator. Mounting method shall isolate the control panel from engine generator vibration. Panel shall be powered from the engine generator battery.
- 2. Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common wall-mounted control and monitoring panel. Panel shall be powered from the engine generator battery.
- 3. Operating and safety indications, protective devices, basic system controls, engine gages, instrument transformers, generator disconnect switch or circuit breaker, and other indicated components shall be grouped in a combination control and power panel. Control and monitoring section of panel shall be isolated from power sections by steel barriers. Panel shall be powered from the engine generator battery. Panel features shall include the following:
  - a. Switchboard Construction: Freestanding unit complying with Section 262413 "Switchboards." Power bus shall be copper. Bus, bus supports, control wiring, and temperature rise shall comply with UL 891.

# F. Control and Monitoring Panel:

- 1. Digital engine generator controller with integrated LCD display, controls, and microprocessor, capable of local and remote control, monitoring, and programming, with battery backup.
- 2. Instruments: Located on the control and monitoring panel and viewable during operation.

- a. Engine lubricating-oil pressure gage.
- b. Engine-coolant temperature gage.
- c. DC voltmeter (alternator battery charging).
- d. Running-time meter.
- e. AC voltmeter, for each phase.
- f. AC ammeter, for each phase.
- g. AC frequency meter.
- h. Generator-voltage adjusting rheostat.
- 3. Controls and Protective Devices: Controls, shutdown devices, and common alarm indication, including the following:
  - a. Cranking control equipment.
  - b. Run-Off-Auto switch.
  - c. Control switch not in automatic position alarm.
  - d. Overcrank alarm.
  - e. Overcrank shutdown device.
  - f. Low-water temperature alarm.
  - g. High engine temperature prealarm.
  - h. High engine temperature.
  - i. High engine temperature shutdown device.
  - j. Overspeed alarm.
  - k. Overspeed shutdown device.
  - 1. Low fuel main tank.
    - 1) Low-fuel-level alarm shall be initiated when the level falls below that required for operation for duration required for the indicated EPSS class.
  - m. Coolant low-level alarm.
  - n. Coolant low-level shutdown device.
  - o. EPS load indicator.
  - p. Battery high-voltage alarm.
  - q. Low cranking voltage alarm.
  - r. Battery-charger malfunction alarm.
  - s. Battery low-voltage alarm.
  - t. Lamp test.
  - u. Contacts for local and remote common alarm.
  - v. Remote manual stop shutdown device.
  - w. Air shutdown damper alarm when used.
  - x. Air shutdown damper shutdown device when used.
  - y. Generator overcurrent-protective-device not-closed alarm.
  - z. Hours of operation.
  - aa. Engine generator metering, including voltage, current, hertz, kilowatt, kilovolt ampere, and power factor.

# G. Connection to Datalink:

1. A separate terminal block, factory wired to Form C dry contacts, for each alarm and status indication.

- 2. Provide connections for datalink transmission of indications to remote data terminals via Ethernet. Data system connections to terminals are covered in Section 260913 "Electrical Power Monitoring and Control."
- H. Common Remote Panel with Common Audible Alarm: Include necessary contacts and terminals in control and monitoring panel. Remote panel shall be powered from the engine generator battery.
- I. Remote Alarm Annunciator: An LED indicator light labeled with proper alarm conditions shall identify each alarm event, and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.
  - 1. Overcrank alarm.
  - 2. Low water-temperature alarm.
  - 3. High engine temperature prealarm.
  - 4. High engine temperature alarm.
  - 5. Low lube oil pressure alarm.
  - 6. Overspeed alarm.
  - 7. Low fuel main tank alarm.
  - 8. Low coolant level alarm.
  - 9. Low cranking voltage alarm.
  - 10. Contacts for local and remote common alarm.
  - 11. Audible-alarm silencing switch.
  - 12. Air shutdown damper when used.
  - 13. Run-Off-Auto switch.
  - 14. Control switch not in automatic position alarm.
  - 15. Fuel tank derangement alarm.
  - 16. Fuel tank high-level shutdown of fuel supply alarm.
  - 17. Lamp test.
  - 18. Low-cranking voltage alarm.
  - 19. Generator overcurrent-protective-device not-closed alarm.
- J. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator unless otherwise indicated.
- K. Remote Emergency-Stop Switch: Flush; wall mounted unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

# 2.7 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Overcurrent protective devices shall be coordinated to optimize selective tripping when a short circuit occurs.
  - 1. Overcurrent protective devices for the entire EPSS shall be coordinated to optimize selective tripping when a short circuit occurs. Coordination of protective devices shall consider both utility and EPSS as the voltage source.

2. Overcurrent protective devices for the EPSS shall be accessible only to authorized personnel.

# B. Generator Overcurrent Protective Device:

- 1. Molded-case circuit breaker, electronic-trip type; 100 percent rated; complying with UL 489:
  - a. Tripping Characteristics: Adjustable long-time and short-time delay and instantaneous.
  - b. Trip Settings: Selected to coordinate with generator thermal damage curve.
  - c. Shunt Trip: Connected to trip breaker when engine generator is shut down by other protective devices.
  - d. Mounting: Adjacent to, or integrated with, control and monitoring panel.
- C. Ground-Fault Indication: Comply with NFPA 70, "Emergency System" signals for ground fault.
  - 1. Indicate ground fault with other engine generator alarm indications.
  - 2. Trip generator protective device on ground fault.

# 2.8 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

- A. Comply with NEMA MG 1.
- B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.
- C. Electrical Insulation: Class H.
- D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required. Provide 12-lead alternator.
- E. Range: Provide limited range of output voltage by adjusting the excitation level.
- F. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.
- G. Enclosure: Dripproof.
- H. Instrument Transformers: Mounted within generator enclosure.
- I. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified and as required by NFPA 110.
  - 1. Adjusting Rheostat on Control and Monitoring Panel: Provide plus or minus 5 percent adjustment of output-voltage operating band.
  - 2. Maintain voltage within 15 percent on one step, full load.
  - 3. Provide anti-hunt provision to stabilize voltage.
  - 4. Maintain frequency within 10 percent and stabilize at rated frequency within 5 seconds.

- J. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.
- K. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.
- L. Subtransient Reactance: 12 percent, maximum.

# 2.9 LOAD BANK

# A. Description:

- 1. Permanent, outdoor, weatherproof, remote-controlled, forced-air-cooled, resistive and reactive unit capable of providing a balanced three-phase, delta-connected load to engine generator at 100 percent rated-system capacity, at 80 percent power factor, lagging. Unit may contain separate resistive and reactive load banks controlled by a common control panel. Unit shall be capable of selective control of load in 25 percent steps and with minimum step changes of approximately 5 and 10 percent available.
- 2. Permanent, radiator-mounted, resistive unit capable of providing a balanced three-phase, delta-connected load to engine generator at 70 percent rated-system capacity. Unit shall be capable of selective control of load in 25 percent steps of load-bank rating and with minimum step changes of approximately 5 and 10 percent available.
- B. Resistive Load Elements: Corrosion-resistant chromium alloy with ceramic and stainless-steel supports. Elements shall be double insulated and designed for repetitive on-off cycling. Elements shall be mounted in removable aluminized-steel heater cases. Galvanized steel is prohibited. Element's maximum resistance shall be between 100 and 105 percent of rated resistance.
- C. Reactive Load Elements: Epoxy-encapsulated reactor coils.
- D. Load-Bank Heat Dissipation: Integral fan with totally enclosed motor shall provide uniform cooling airflow through load elements. Airflow and coil operating current shall be such that, at maximum load, with ambient temperature at the upper end of specified range, load-bank elements operate at not more than 50 percent of maximum continuous temperature rating of resistance elements.
- E. Load-Element Switching: Remote-controlled contactors switch groups of load elements. Contactor coils are rated 120 V. Contactors shall be located in a separate NEMA 250, Type 3R enclosure within load-bank enclosure, accessible from exterior through hinged doors with tumbler locks.
- F. Contactor Enclosures: Heated by thermostatically controlled strip heaters to prevent condensation.
- G. Load-Bank Enclosures: NEMA 250, Type 3R, aluminized steel complying with NEMA ICS 6. Louvers at cooling-air intake and discharge openings shall prevent entry of rain and snow. Openings for airflow shall be screened with 1/2-inch-square, galvanized-steel mesh. Reactive load bank shall include automatic shutters at air intake and discharge. Components other than resistive elements shall receive exterior epoxy coating with compatible primer. Comply with requirements in Section 099600 "High-Performance Coatings."

- H. Protective Devices: Power input circuits to load banks shall be fused, and fuses shall be selected to coordinate with generator circuit breaker. Fuse blocks shall be located in contactor enclosure. Cooling airflow and overtemperature sensors shall automatically shut down and lock out load bank until manually reset. Safety interlocks on access panels and doors shall disconnect load power, control, and heater circuits. Fan motor shall be separately protected by overload and short-circuit devices. Short-circuit devices shall be noninterchangeable fuses with 200,000-A interrupting capacity.
- I. Load-Bank Remote-Control Panel: Separate from load bank in NEMA 250, Type 1 enclosure with a control power switch and pilot light, and switches controlling groups of load elements.
- J. Control Sequence: Control panel may be preset for adjustable single-step loading of generator during automatic exercising.

## 2.10 OUTDOOR ENGINE GENERATOR ENCLOSURE

## A. Description:

- 1. Vandal-resistant, sound-attenuating, weatherproof steel housing; wind resistant up to 100 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.
- 2. Prefabricated or pre-engineered, galvanized-steel-clad, integral structural-steel-framed, walk-in enclosure; erected on concrete foundation.
- B. Structural Design and Anchorage: Comply with ASCE/SEI 7 for wind loads up to 100 mph.
- C. Seismic Design: Comply with seismic requirements in Section 260548.16 "Seismic Controls for Electrical Systems."
- D. Hinged Doors: With padlocking provisions.
- E. Space Heater: Thermostatically controlled and sized to prevent condensation.
- F. Lighting: Provide weather-resistant LED lighting with 30 fc average maintained.
- G. Thermal Insulation: Manufacturer's standard materials and thickness selected in coordination with space heater to maintain winter interior temperature within operating limits required by engine generator components.
- H. Muffler Location: Within enclosure.
- I. Engine-Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for two hours with ambient temperature at top of range specified in system service conditions.
  - 1. Louvers: Fixed-engine, cooling-air inlet and discharge. Stormproof and drainable louvers prevent entry of rain and snow.
  - 2. Automatic Dampers: At engine cooling-air inlet and discharge. Dampers shall be closed to reduce enclosure heat loss in cold weather when unit is not operating.

- 3. Ventilation: Provide temperature-controlled exhaust fan interlocked to prevent operation when engine is running.
- J. Interior Lights with Switch: Factory-wired, vapor-proof luminaires within housing; arranged to illuminate controls and accessible interior. Arrange for external electrical connection.
  - 1. AC lighting system and connection point for operation when remote source is available.
  - 2. DC lighting system for operation when remote source and generator are both unavailable.
- K. Convenience Outlets: Factory-wired, GFCI. Arrange for external electrical connection.

# 2.11 VIBRATION ISOLATION DEVICES

- A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized-steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.
  - 1. Material: Standard neoprene separated by steel shims.
  - 2. Shore A Scale Durometer Rating: 65.
  - 3. Number of Layers: One.
  - 4. Minimum Deflection: 1 inch.
- B. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic restraint.
  - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to wind loads or if weight is removed; factory-drilled baseplate bonded to 1/4-inch-thick, elastomeric isolator pad attached to baseplate underside; and adjustable equipment-mounting and -leveling bolt that acts as blocking during installation.
  - 2. Outside Spring Diameter: Not less than 80 percent of compressed height of the spring at rated load.
  - 3. Minimum Additional Travel: 50 percent of required deflection at rated load.
  - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
  - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
  - 6. Minimum Deflection: 1 inch.
- C. Comply with requirements in Section 232116 "Hydronic Piping Specialties" for vibration isolation and flexible connector materials for steel piping.
- D. Comply with requirements in Section 233113 "Metal Ducts" for vibration isolation and flexible connector materials for exhaust shroud and ductwork.
- E. Vibration isolation devices shall not be used to accommodate misalignments or to make bends.

#### 2.12 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

# 2.13 SOURCE QUALITY CONTROL

- A. Prototype Testing: Factory test engine generator using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.
  - 1. Tests: Comply with IEEE 115 and with NFPA 110, Level 1 Energy Converters.
- B. Project-Specific Equipment Tests: Before shipment, factory test engine generator and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:
  - 1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
  - 2. Test generator, exciter, and voltage regulator as a unit.
  - 3. Full load run.
  - 4. Maximum power.
  - 5. Voltage regulation.
  - 6. Transient and steady-state governing.
  - 7. Single-step load pickup.
  - 8. Safety shutdown.
  - 9. Report factory test results within 10 days of completion of test.

### PART 3 - EXECUTION

# 3.1 EXAMINATION

- A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine generator performance.
- B. Examine roughing-in for piping systems and electrical connections. Verify actual locations of connections before packaged engine generator installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

# 3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 404.
- B. Comply with packaged engine generator manufacturers' written installation and alignment instructions and with NFPA 110.

## C. Equipment Mounting:

- 1. Coordinate size and location of concrete bases for packaged engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- 2. Install packaged engine generator with elastomeric isolator pads having a minimum deflection of 1 inch on 4-inch-high concrete base. Secure sets to anchor bolts installed in

concrete bases. Concrete base construction is specified in Section 260548.16 "Seismic Controls for Electrical Systems."

- D. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.
- E. Exhaust System: Install Schedule 40 black steel piping with welded joints and connect to engine muffler. Install thimble at wall. Piping shall be same diameter as muffler outlet.
  - 1. Piping materials and installation requirements are specified in Section 232113 "Hydronic Piping."
  - 2. Install flexible connectors and steel piping materials according to requirements in Section 232116 "Hydronic Piping Specialties."
  - 3. Insulate muffler/silencer and exhaust system components according to requirements in Section 230719 "HVAC Piping Insulation."
- F. Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

## 3.3 CONNECTIONS

- A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Provide a minimum of one 90-degree bend in flexible conduit routed to the engine generator from a stationary element.
- C. Balance single-phase loads to obtain a maximum of 10 percent unbalance between any two phases.

# 3.4 IDENTIFICATION

- A. Identify system components according to Section 230553 "Identification for HVAC Piping and Equipment" and Section 260553 "Identification for Electrical Systems."
- B. Install a sign indicating the generator neutral is bonded to the main service neutral at the main service location.

# 3.5 FIELD QUALITY CONTROL

- A. Testing Agency:
  - 1. Engage a qualified testing agency to perform tests and inspections.
- B. Tests and Inspections:

- 1. Perform tests recommended by manufacturer and each visual and mechanical inspection and electrical and mechanical test listed in first two subparagraphs below, as specified in NETA ATS. Certify compliance with test parameters.
  - a. Visual and Mechanical Inspection:
    - 1) Compare equipment nameplate data with Drawings and the Specifications.
    - 2) Inspect physical and mechanical condition.
    - 3) Inspect anchorage, alignment, and grounding.
    - 4) Verify that the unit is clean.
  - b. Electrical and Mechanical Tests:
    - 1) Perform insulation-resistance tests according to IEEE 43.
      - a) Machines Larger Than 200 hp: Test duration shall be 10 minutes. Calculate polarization index.
    - 2) Test protective relay devices.
    - 3) Verify phase rotation, phasing, and synchronized operation as required by the application.
    - 4) Functionally test engine shutdown for low oil pressure, overtemperature, overspeed, and other protection features as applicable.
    - 5) Perform vibration test for each main bearing cap.
    - 6) Verify correct functioning of the governor and regulator.
- 2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here, including, but not limited to, single-step full-load pickup test.
- 3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
  - a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
  - b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
  - c. Verify acceptance of charge for each element of the battery after discharge.
  - d. Verify that measurements are within manufacturer's specifications.
- 4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.
- 5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine generator system before and during system operation. Check for air, exhaust, and fluid leaks.
- 6. Exhaust Emissions Test: Comply with applicable government test criteria.
- 7. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.
- 8. Harmonic-Content Tests: Measure harmonic content of output voltage at 25 and 100 percent of rated linear load. Verify that harmonic content is within specified limits.

- 9. Noise Level Tests: Measure A-weighted level of noise emanating from engine generator installation, including engine exhaust and cooling-air intake and discharge, at four locations 20 feetfrom edge of the generator enclosure, and compare measured levels with required values.
- C. Coordinate tests with tests for transfer switches and run them concurrently.
- D. Test instruments shall have been calibrated within the past 12 months, traceable to NIST Calibration Services, and adequate for making positive observation of test results. Make calibration records available for examination on request.
- E. Leak Test: After installation, charge exhaust, coolant, and fuel systems and test for leaks. Repair leaks and retest until no leaks exist.
- F. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation for generator and associated equipment.
- G. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- H. Remove and replace malfunctioning units and retest as specified above.
- I. Retest: Correct deficiencies identified by tests and observations, and retest until specified requirements are met.
- J. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- K. Infrared Scanning: After Substantial Completion, but not more than 60 days after final acceptance, perform an infrared scan of each power wiring termination and each bus connection while running with maximum load. Remove all access panels so terminations and connections are accessible to portable scanner.
  - 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan 11 months after date of Substantial Completion.
  - 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
  - 3. Record of Infrared Scanning: Prepare a certified report that identifies terminations and connections checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

### 3.6 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer's authorized service representative. Include quarterly preventive maintenance and exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Parts shall be manufacturer's authorized replacement parts and supplies.

# 3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

### PART 4 - METHOD OF MEASUREMENT

A. The emergency generator to be paid for under this item shall be the number of each type installed, complete with fuel, fuel tank, accessories and annunciators in place, ready for operation, and accepted by the Engineer.

### PART 5 - BASIS OF PAYMENT

- A. Payment will be made at the contract unit price for each item completed in accordance with the plans and specifications that is installed by the Contractor and accepted by the Engineer. This price shall be full compensation for furnishing all materials and for all preparation, assembly and installation of these materials, and for all labor, equipment, tools, incidentals, and appurtenances necessary to complete these items.
- B. Payment shall be made under:

|          | EMERGENCY GENERATOR, 240/120V, 1PH, 3W, |     |
|----------|-----------------------------------------|-----|
| 263213-1 | COMPLETE W/ CONCRETE PAD, FUEL TANK     | EA. |
|          | & FUEL FOR LIFT STATION                 |     |

**END OF SECTION 263213.13**